
Non-recombinant Mutagenesis of Bacillus subtilis MTCC 2414
for Hyper Production of Laccase

The advent of protein engineering and sophisticated molecular 
technologies has opened possibilities for screening variants of 
enzymes and tailor-made proteins from microorganisms with 
enhanced production yields which may be of interest for specific 
commercial applications. During this investigation the 
indigenous strain of Bacillus subtilis MTCC 2414 procured from 
Institute of Microbial Technology (IMTECH) Chandigarh, India 
was improved for enhanced laccase production by using physical 
mutagen (ultraviolet rays) and chemical mutagens viz.,0.5 mg/ml 
ethidium bromide and 0.5 mg/ml ethyl methane sulfonate. 
Mutant GCBR 4 with hyper laccase production (178.8 ± 3.67 
U/ml)was obtained after treating wild strain for 80 min with 
ethidium bromide. The effectiveness of hyper laccase producing 
mutant GCBR4 indicates its possible applicability in various 
biotechnological and industrial processes.
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INTRODUCTION

Enzymes are delicate protein molecules ubiquitous in 
occurrence, and are essential for cell growth and 
differentiation[1, 2].The extracellular enzymes are of 

commercial value and find multiple applications in various 
industrial sectors[3]. Although there are many microbial sources 
available for producing extracellular enzymes, only a few are 
recognized as commercial producers[4]. Of these, strains of 
Bacillus sp. dominate the industrial sector[5].Laccase(p-
diphenol: oxygen oxidoreductase; EC 1.10.3.2; also known as p-
diphenol oxidase; p-DPO; p-diphenolase) is a copper-containing 
hydrolase[6], which has an ability to catalyze the oxidation of a 
wide variety of organic and inorganic compounds by coupling it to 
the reduction of oxygen to water[7].

There is an increasing demand for laccase in the market for 
various applications such as biopulping[8], biobleaching[9], 
denim bleaching[10], organic synthesis[11], decolorization[12], 
dechlorination of xenobiotic compounds[13], bioremediation 
[14], plant fiber modification, ethanol production, wine 
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stabilization, baking[15], cosmetic and dermatological 
preparations [16], biofuel cells etc.[17].Many microorganisms 
like species of A. lipoferum[18], Aquifexaeolicus[19], 
Azospirillumlipoferum[20], B. subtilis[21], B. sphaericus[22], B. 
ha lodurans  LBH-1  [23] ,  Escher ich ia  co l i  [24] ,  
Marinomonasmediterranea [25], Oceanobacillus iheyensis[26], 
P. maltophila[27], P. syringae[28], P. fluorescens GB-1[29], P. 
putida GB-1[30], P. desmolyticum NCIM 2112[31], P. 
aerophilum[32], Streptomycetes sp.[33], Thermusthermophilus 
TTC1370[34], Xanthomonascampesteris[35] have been 
evaluated for the production of laccase.

Microbes serve as the preferred source of laccase because of 
their rapidgrowth, the limited space required for their cultivation, 
and the ease with which they can be genetically manipulated to 
generate new enzymes with altered properties[2]. However, high 
cost and low yields of laccase have been the main problems for its 
industrial production. Therefore, there is a great need to develop 
new strains with inexpensive mutagens that provides a high 
laccase yield.
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For industrial use enzyme must be produced at low cost and 
should be reusable and reproducible[2]. To achieve this many 
techniques has been developed for strain improvement. Strain 
improvement is usually done by mutating the microorganism that 
produces the enzyme by techniques such as classical 
mutagenesis, which involves exposing the microbe to physical 
mutagens such as X-rays, ?-rays, UV rays, etc., and chemical 
mutagens such as NTG, EMS, EtBr, etc.[2,36]. 

There are a great number of literatures reported to use the 
strain improvement process for producing various industrial 
enzymes like lipase, chitinase, cellulase, glucoamylase, protease 
and fibrinolytic protease [2,37-39]. But there was no report 
available on mutation studies of Bacillus subtilis MTCC 2414 for 
laccase production. The present investigation was undertaken to 
improve the laccase quantitatively from Bacillus subtilis MTCC 
2414 strain through exposure to physical and chemical mutagens.

All chemicals and reagents of analytical grade were used in 
this research and are mostly purchased from sigma USA and Hi 
media Mumbai. All the experiments were conducted in triplicate 
and the mean values are considered.

The Bacillus subtilis MTCC 2414 strain that produces laccase 
was employed in the present study. The organism was procured 
from IMTECH, Chandigarh, India. Stock cultures were 
maintained in nutrient broth medium with 70% glycerol, cultures 
were preserved at -20°C[40]. The inoculum was prepared by 
transferring a loopful of stock culture (Bacillus subtilis MTCC 
2414) to a certain volume (100 ml) of sterile nutrient broth, stock 
medium, then incubated it overnight at 37°C on a rotary shaker 
200 rpm, before being used for inoculation[2]. A stock suspension 

3was prepared and adjusted to 7×10  cells/ml.

7Four ml of the spore suspension containing 1×10  spores/ml 

MATERIALS AND METHODS

Experimental Chemicals

Micro organism and Inoculum Preparation

Mutation and Selection

Mutagenesis by UV Irradiation

was pipetted aseptically into sterile petridish of 80 mm diameter 
having a flat bottom. The exposure of spore suspension to UV 
light was carried at a distance of 30 cm away from the UV lamp 
(15 W, 2537Å). The exposure times were 30 to 90 min [2,41-
46].Each UV exposed spore suspension was stored in the dark 
overnight to avoid photo reactivation, then was serially diluted in 
saline and plated in agar medium using 0.04% guaiacol. The 
plates were incubated for 24h at 37°C and the numbers of colonies 
on each plate was counted. Each colony was assumed to be 
formed from a single spore. Mutants for hyper production of 
laccase were detected visually by the intensity of zone sand were 
further selected based on their capacity of enzyme production in 
the liquid medium.

7Four ml of the UV mutated spore suspension containing 1×10  
spores/ml was pipetted aseptically into 15 ml of (0.5 mg/ml) 
Ethidium bromide (EtBr) solution and incubated at 37°C. The 
sample (2 ml) of this solution was taken at intervals of 30 to 270 
min and centrifuged immediately at 10,000 rpm for 5 min at 37°C 
[2,43,47-50]. The supernatant was decanted and the cell pellet 
obtained was resuspended in 5 ml saline to stop the reaction. The 
washed cell suspension was serially diluted in saline and plated on 
agar medium using 0.04% guaiacol. The plates were incubated for 
24h at 37°C and the number of colonies on each plate was 
counted. Each colony was assumed to be formed from a single 
spore. Mutants for hyper production of laccase were detected 
visually by the intensity of zones and were further selected based 
on their capacity of enzyme production in the liquid medium.

Four ml of the EtBr mutated spore suspension containing 
71×10  spores/ml was pipetted aseptically into 15 ml of (0.5 

mg/ml) ethyl methane sulfonate (EMS) solution and incubated at 
37°C. The sample (2 ml) of this solution was taken at intervals of 
30 to 270 min and centrifuged immediately at 10,000 rpm for 5 
min at 37°C [2,43,44,49-51]. The supernatant was decanted and 
the cell pellet obtained was re suspended in 5 ml saline to stop the 
reaction. The washed cell suspension was serially diluted in saline 
and plated on agar medium using 0.04% guaiacol. The plates were 
incubated for 24h at 37°C and the number of colonies in each plate 

Mutagenesis by Ethidium bromide (EtBr)

Ethyl Methane Sulfonate (EMS) Mutagenesis

Fig 1. : Mutants after the treatment with UV radiations
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were counted. Each colony was assumed to be formed from a 
single spore. Mutants for hyper production of laccase were 
detected visually by the intensity of zones and were further 
selected based on their capacity of enzyme production in the 
liquid medium.

Hyper laccase producing mutant strains of ultra-violet rays, 
ethyl methane sulfonate and ethidiumbromide were inoculated 
separately in the fermentation medium. The medium used for the 
production of laccase contains (g/l)1.0 glucose, 1.0 peptone, 0.2 
K HPO , 0.04 CaC1 , 0.02 MgSO , 0.0002 FeSO , 0.001 ZnSO  2 4 2 4 4 4

and 0.02 guaiacol (Hi media, Mumbai, India) as inducer for 
laccase production. The pH 6 of the medium was adjusted with 1N 
HC1/NaOH. Two percent (v/v) of 24h old inoculum suspension 
was transferred to 50 ml of growth medium in 250 ml Erlenmeyer 
flasks. These flasks were then placed in the rotary incubator 
shaker (Lab top) rotating at 200rpm for 24h at 37°C. After the 
completion of fermentation the whole fermentation broth was 

ocentrifuged at 10,000 rpm at 4 C for 10 min and the clear 
supernatant (crude enzyme) was used for the estimation of 

Production of Laccase by Shake Flask Fermentation

Fig 2. : Mutants after the treatment with EtBr

laccase. All the experiments were run parallel in triplicate.

Laccase activity was measured by monitoring the oxidation of 
1mM guaiacol (Hi media, Mumbai, India) buffered with 0.2 M 
sodium phosphate buffer (pH 6) at 420 nm for 1 min. The reaction 
mixture (900 µl) contained 300 l of 1 mM guaiacol, culture 
filtrate, and 0.2 M sodium phosphate buffer (pH 6). One unit of 
the enzyme activity was defined as the amount of enzyme that 
oxidized 1 mol of guaiacol per minute. The enzyme activity was 
expressed in U/ml [52].

Data of Fig: 1shows the production of laccase by UV treated 
strains of Bacillus subtilis MTCC 2414. The parental strains of 
Bacillus subtilis MTCC 2414 was subjected to UV treatment for 
different time intervals i.e. from 30 to 90 min. Of all the isolates 
investigated, maximum enzyme production (155.2 ± 1.19 
U/ml/min) was obtained by GCU 3 which was selected after 60 

Determination of Laccase Activity

RESULTS 

Improvement of Strain by Physical (UV Radiation) 
Mutagenesis

⇓

⇓

Fig 2. : Mutants after the treatment with EMS
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min of UV treatment.

The mutant strains of Bacillus subtilis MTCC 2414 was 
selected after the treatment of the parental strain with EtBr (Fig: 
2). The GCU 3 strain of Bacillus subtilis MTCC 2414 was 
subjected to EtBr treatment for different time intervals i.e. 30 to 
270 min. Of all the isolates investigated, maximum enzyme 
production (178.8 ± 3.67 U/ml/min) was obtained by GCBR 4.

The strains of Bacillus subtilis MTCC 2414 were screened 
after the chemical treatment with EMS (Fig: 3). The GCBR 4 
strains of Bacillus subtilis MTCC 2414 was subjected to EMS 
treatment for 30 to 270 min. Of all the isolates investigated, 
maximum enzyme production (161.8 ± 2.76 U/ml/min) was 
obtained by GCMS 4.

Five UV treated mutant strains of Bacillus subtilis MTCC 
2414 were isolated on the basis of a bigger zone of guaiacol 
oxidation in the petri plates and named as GCU isolates. These 
strains were screened for laccase production under submerged 
fermentation. Of all the isolates investigated, maximum enzyme 
production (155.2 ± 1.19 U/ml/min) was obtained by GCU 3 
which was selected after 60 min of UV treatment. The production 
of enzyme following the growth of the organism was found to be 
highly significant than other mutant derivatives. But this mutant 
was not stable. It may be due to the reason that the mutant 
produced by UV irradiations had undergone back mutations when 
they were exposed to light [41]. Five EtBr treated mutant strains 
of Bacillus subtilis MTCC 2414 was selected on the basis of a 
bigger zone of guaiacol oxidation in the petriplates and named as 
GCBR isolates. Further screening of the strains for laccase 
production under submerged fermentation. Of all the isolates 
investigated, maximum enzyme production (178.8 ± 3.67 
U/ml/min) was obtained by GCBR 4. Five EMS treated mutant 
strains of Bacillus subtilis MTCC 2414 was isolated on the basis 
of a bigger zone of guaiacol oxidation in the petriplates and 
named as GCMS isolates. This mutant showed improvement in 
the production of the enzyme. Of all the isolates investigated, 
maximum enzyme production (161.8 ± 2.76 U/ml/min) was 
obtained by GCMS 4.

The search for promising strains of laccase producers is a 
continuous process. In this study the wild strain of Bacillus 
subtilis MTCC 2414 was improved for enhanced laccase 
production by using physical and chemical mutagens.GCBR 4 
with hyper laccase production (178.8 ± 3.67U/ml/min) was 
obtained after 80 min treating wild strain with Ethidium bromide. 
Finally, from the above results it was concluded that Bacillus 
subtilis MTCC 2414 mutant strain was developed by using EtBr 
treatment remained as a stable mutant after multiple culture 
cycles.GCBR 4 mutant showed 2 fold higher laccase production 
than the wild strain in flask fermentation. Thus the selected 
mutant has potential in minimizing the cost of enzyme for its 
biotechnological applications.
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